Senin, 11 Maret 2013

BANGUN DATAR YANG SEBANGUN DAN KONGRUEN


B. Segitiga-segitiga Kongruen
1. Syarat Dua Segitiga yang Kongruen
Tentunya kalian masih ingat tentang syarat dua bangun datar yang kongruen. Coba sebutkan. Lebih lanjut, kita akan mengaplikasikannya pada salah satu bangun datar yaitu segitiga. Sekarang coba katakan, apa yang disebut dengan segitiga itu? Bisakah kalian sebutkan benda-benda di sekitar kita yang berbentuk segitiga? Segitiga terangkai dari enam unsur yang terdiri dari tiga sisi dan tiga sudut.
2. Sifat Dua Segitiga yang Kongruen
Dua segitiga kongruen dapat ditentukan dari ketiga sisi dan sudutnya.
a.Tiga Sisi (S - S - S)
Jika dua buah segitiga adalah kongruen maka ketiga sisi segitiga pertama sama panjang dengan ketiga sisi segitiga kedua (sisi-sisi seletak).
b. Dua Sisi dan Satu Sudut Apit (S - Sd - S)
Dua segitiga yang kongruen maka dua sisi segitiga pertama sama dengan dua sisi segitiga kedua, dan sudut yang diapitnya sama besar.
c. Dua Sudut dan Satu Sisi (Sd - S - Sd)
Dua segitiga yang kongruen maka dua buah sudut dari segitiga pertama sama dengan dua sudut pada segitiga kedua, dan sisi di antara kedua sudut tersebut sama panjang.

3. Perbandingan Sisi-sisi Dua Segitiga Kongruen
Jika dua buah segitiga kongruen, maka sisi-sisi yang berada di depan sudut yang sama besar mempunyai panjang sama. Perbandingan sisi-sisi segitiga pertama sama dengan perbandingan sisi-sisi segitiga yang kedua.
Misalkan
Diberikan: Δ KLM = Δ PQR dengan sifat (s-sd-s)
Diketahui: KM = PR, K = P, KL = PQ
Akibatnya LM = QR
                    ∠ L = Q
                  ∠ M = R
1. Syarat Dua Segitiga yang Sebangun
Perhatikan gambar berikut ini.
Δ ABC ~ Δ PQR sehingga berlaku pula syarat kesebangunan, yaitu:
2. Sifat Dua Segitiga yang Sebangun
a. Sisi-sisi yang Bersesuaian Sebanding

b. Sudut-sudut yang Seletak Sama Besar
c. Satu Sudut Sama Besar dan Kedua Sisi yang Mengapitnya Sebanding (S-Sd-S)
Selain dua sifat segitiga di atas, kita dapat menentukan sifat ketiga yaitu jika salah satu sudutnya sama besar dan kedua sisi yang mengapitnya sebanding, maka kedua segitiga itu sebangun

3. Perbandingan Sisi-sisi Dua Segitiga Sebangun
Sisi-sisi yang bersesuaian pada dua segitiga yang sebangun adalah sebanding. Oleh karena itu jika diketahui faktor skala perbandingannya maka kita dapat mencari panjang sisi-sisi segitiga yang belum diketahui.

D. Penerapan Konsep Kesebangunan dalam Pemecahan Masalah
Dalam kehidupan sehari-hari banyak sekali pemanfaatan konsep kesebangunan. Pembuatan miniatur suatu bangunan, penggambaran peta suatu daerah semuanya menggunakan konsep kesebangunan. Lebih jelasnya perhatikan contoh berikut.
Contoh1.10
Sebuah model/rancangan suatu pesawat terbang berskala 1 : 300. Jika panjang pesawat t
ersebut sesungguhnya adalah 60 meter dan jarak antara kedua ujung sayapnya 18 meter, tentukan ukuran-ukuran tersebut pada model/rancangannya.
Penyelesaian:
Misal panjang pesawat pada rancangan = x
Jarak kedua ujung sayap = y




Tidak ada komentar:

Posting Komentar